Input

NAG C Library Function Document

nag_triplets_test (g08ecc)

1 Purpose

nag triplets test (g08ecc) performs the triplets test on a sequence of observations from the interval [0,1].

2 Specification

3 Description

nag_triplets_test computes the statistics for performing a triplets test which may be used to investigate deviations from randomness in a sequence of [0,1] observations.

An m by m matrix, C, of counts is formed as follows. The element c_{jkl} of C is the number of triplets $(\mathbf{x}(i), \mathbf{x}(i+1), \mathbf{x}(i+2))$, for $i=1,4,7,\ldots,n-2$, such that

$$\begin{array}{ccccc} \frac{j-1}{m} & \leq & \mathbf{X}(i) & < & \frac{j}{m} \\ \frac{k-1}{m} & \leq & \mathbf{X}(i+1) & < & \frac{k}{m} \\ \frac{l-1}{m} & \leq & \mathbf{X}(i+2) & < & \frac{l}{m}. \end{array}$$

Note that all triplets formed are non-overlapping and are thus independent under the assumption of randomness.

Under the assumption that the sequence is random, the expected number of triplets for each class (i.e., each element of the count matrix) is the same, that is the triplets should be uniformly distributed over the unit cube $[0,1]^3$. Thus the expected number of triplets for each class is just the total number of triplets, $\sum_{j,k,l=1}^{m} c_{jkl}$, divided by the number of classes, m^3 .

The χ^2 test statistic used to test the hypothesis of randomness is defined as:

$$X^{2} = \sum_{j,k,l=1}^{m} \frac{(c_{jkl} - e)^{2}}{e}$$

where $e = \sum_{j,k,l=1}^{m} c_{jkl}/m^3$ = expected number of triplets in each class.

The use of the χ^2 distribution as an approximation to the exact distribution of the test statistic, X^2 , improves as the length of the sequence relative to m increases, hence the expected value, e, increases.

4 Parameters

1: \mathbf{n} - Integer Input

On entry: the number of observations, n.

Constraint: $\mathbf{n} \geq 3$.

2: $\mathbf{x}[\mathbf{n}]$ - const double

On entry: the sequence of observations.

Constraint: $0.0 \le \mathbf{x}[i-1] \le 1.0$, for i = 1, 2, ..., n.

[NP3491/6] g08ecc.1

3: **max count** – Integer

Input

On entry: the size of the count matrix to be formed, m.

Constraint: $\max_{\cdot} count \geq 2$.

4: **chi** – double *

Output

On exit: contains the χ^2 test statistic, χ^2 , for testing the null hypothesis of randomness.

5: **df** – double *

Output

On exit: contains the degrees of freedom for the χ^2 statistic.

6: **prob** – double *

Output

On exit: contains the upper tail probability associated with the χ^2 test statistic, i.e., the significance level.

7: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, **n** must not be less than 3: $\mathbf{n} = \langle value \rangle$.

NE_INT_ARG_LE

On entry, max_count must not be less than or equal to 1: max_count = <value>.

NE REAL ARRAY CONS

```
On entry, \mathbf{x}[<value>] = <value>
Constraint: 0 < \mathbf{x}[i] < 1.0, for i = 0, 1, ..., n - 1.
```

NE G08EC TRIPLETS

No triplets were found because less than 3 observations were provided in total.

NE_G08EC_CELL

The expected value for the counts in each element of the count matrix is less than or equal to 5.0. This implies that the χ^2 distribution may not be a very good approximation to the test statistic.

NE ALLOC FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The time taken by the routine increases with the number of observations, n.

6.1 Accuracy

The computations are believed to be stable. The computations of **prob** given the values of **chi** and **df** will obtain a relative accuracy of 5 significant figures for most cases.

g08ecc.2 [NP3491/6]

6.2 References

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Ripley B D (1987) Stochastic Simulation Wiley

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

7 See Also

None.

8 Example

The following program performs the pairs test on 10000 pseudo-random numbers from a uniform distribution U(0,1) generated by nag_random_continuous_uniform (g05cac). nag_triplets_test is called with \mathbf{m} set to 5.

8.1 Program Text

```
/* nag_triplets_test (g08ecc) Example Program.
* Copyright 2000 Numerical Algorithms Group.
* Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagg08.h>
int main (void)
{
 double chi, df, p, *x=0, enda, endb;
 Integer i, init, exit_status=0, max_count, n;
 NagError fail;
 INIT_FAIL(fail);
 Vprintf("g08ecc Example Program Results\n");
 init = 0;
 g05cbc(init);
 n = 10000;
 if (!(x = NAG_ALLOC(n, double)))
      Vprintf("Allocation failure\n");
     exit_status = -1;
      goto END;
    }
 enda = 0.0;
 endb = 1.0;
 for (i = 0; i < n; i++)
   x[i] = g05dac(enda, endb);
 max\_count = 5;
 g08ecc(n, x, max_count, &chi, &df, &p, &fail);
 if (fail.code != NE_NOERROR && fail.code != NE_GO8EC_CELL)
```

[NP3491/6] g08ecc.3

```
{
    Vprintf("Error from g08ecc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
Vprintf("\n");
Vprintf("%s%10.4f\n", "chisq = ", chi);
Vprintf("%s%8.2f\n", "df = ", df);
Vprintf("%s%10.4f\n", "prob = ", p);
if (fail.code == NE_G08EC_CELL)
    Vprintf("Error from g08ecc.\n%s\n", fail.message);
END:
    if (x) NAG_FREE(x);
    return exit_status;
}
```

8.2 Program Data

None.

8.3 Program Results

g08ecc.4 (last) [NP3491/6]